Evolutionarily conserved amino acids in MHC-II mediate bat influenza A virus entry into human cells.

PLoS biology(2023)

引用 0|浏览11
暂无评分
摘要
The viral hemagglutinins of conventional influenza A viruses (IAVs) bind to sialylated glycans on host cell surfaces for attachment and subsequent infection. In contrast, hemagglutinins of bat-derived IAVs target major histocompatibility complex class II (MHC-II) for cell entry. MHC-II proteins from various vertebrate species can facilitate infection with the bat IAV H18N11. Yet, it has been difficult to biochemically determine the H18:MHC-II binding. Here, we followed a different approach and generated MHC-II chimeras from the human leukocyte antigen DR (HLA-DR), which supports H18-mediated entry, and the nonclassical MHC-II molecule HLA-DM, which does not. In this context, viral entry was supported only by a chimera containing the HLA-DR α1, α2, and β1 domains. Subsequent modeling of the H18:HLA-DR interaction identified the α2 domain as central for this interaction. Further mutational analyses revealed highly conserved amino acids within loop 4 (N149) and β-sheet 6 (V190) of the α2 domain as critical for virus entry. This suggests that conserved residues in the α1, α2, and β1 domains of MHC-II mediate H18-binding and virus propagation. The conservation of MHC-II amino acids, which are critical for H18N11 binding, may explain the broad species specificity of this virus.
更多
查看译文
关键词
mediate bat influenza,amino acids,virus entry
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要