Transport of polystyrene nanoplastics in porous media: Combined effects of two co-existing substances.

The Science of the total environment(2023)

引用 0|浏览1
暂无评分
摘要
Both surfactants and natural organic matters (NOMs) are substances commonly found in aqueous environments, and their effects on the transport of nanoplastics that is gradually gaining widespread attention in porous media are currently in their infancy, while their combined effects are absent. We investigated innovatively the combined effect of surfactants and NOMs on the transport of polystyrene nanoplastics (PS-NPs) in saturated porous media. Adsorption tests of surfactants and NOMs onto PS-NPs, adsorption tests of PS-NPs onto quartz sand, and transport tests of PS-NPs in saturated quartz sand were conducted. Hydrophobicity and Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energy were measured and calculated. A mathematical model was employed to fit the transport of PS-NPs in porous media. It was found that the effects and action mechanisms of cationic cetyl trimethylammonium bromide (CTAB) and anionic sodium dodecylbenzene sulfonate (SDBS) on the transport of PS-NPs in porous media were distinct. In the presence of CTAB, 1 mg/L humic acid (HA) and 10 mg/L sodium alginate (SA) could promote aggregation of PS-NPs by decreasing the absolute zeta potential of PS-NPs, and reducing the energy barrier between PS-NPs and porous media and increasing the blocking and straining, thus inhibiting the transport of PS-NPs. In the presence of SDBS, SA and HA could improve the adsorption of SDBS onto PS-NPs by bridging and increasing adsorption sites, thus increasing the hydrophilicity of PS-NPs and improving the transport of PS-NPs. Whether or not NOMs were present, the transport of PS-NPs in porous media was mainly governed by the DLVO interaction energy in the presence of cationic surfactants and by hydrophobicity in the presence of anionic surfactants. This innovative observation has led to an understanding on the environmental behaviour of nanoplastics in porous media under complex environments.
更多
查看译文
关键词
polystyrene nanoplastics,porous media,co-existing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要