Novel potentially pathogenic variants detected in genes causing intellectual disability and epilepsy in Polish families

S. Skoczylas, P. Jakiel,T. Płoszaj, K. Gadzalska,M. Borowiec,A. Pastorczak,H. Moczulska, M. Malarska, A. Eckersdorf-Mastalerz, E. Budzyńska,A. Zmysłowska

Neurogenetics(2023)

引用 0|浏览9
暂无评分
摘要
Background Intellectual disability (ID) affects 1–3% of the world population. The number of genes whose dysfunctions cause intellectual disability is increasing. In addition, new gene associations are constantly being discovered, as well as specific phenotypic features for already identified genetic alterations are being described. The aim of our study was to search for pathogenic variants in genes responsible for moderate to severe intellectual disability and epilepsy, using a panel of targeted next-generation sequencing (tNGS) for diagnosis. Methods The group of 73 patients (ID, n =32; epilepsy, n =21; ID and epilepsy, n =18) was enrolled in the nucleus DNA (nuDNA) study using a tNGS panel (Agilent Technologies, USA). In addition, high coverage mitochondrial DNA (mtDNA) was extracted from the tNGS data for 54 patients. Results Fifty-two rare nuDNA variants, as well as 10 rare and 1 novel mtDNA variants, were found in patients in the study group. The 10 most damaging nuDNA variants were subjected to a detailed clinical analysis. Finally, 7 nuDNA and 1 mtDNA were found to be the cause of the disease. Conclusions This shows that still a very large proportion of patients remain undiagnosed and may require further testing. The reason for the negative results of our analysis may be a non-genetic cause of the observed phenotypes or failure to detect the causative variant in the genome. In addition, the study clearly shows that analysis of the mtDNA genome is clinically relevant, as approximately 1% of patients with ID may have pathogenic variant in mitochondrial DNA.
更多
查看译文
关键词
Next-generation sequencing,Pathogenic variants,Intellectual disability,Epilepsy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要