Chrome Extension
WeChat Mini Program
Use on ChatGLM

Highly porous phosphate-based glasses for controlled delivery of antibacterial Cu ions prepared via sol-gel chemistry

Farzad Foroutan, Benjamin A. Kyffin, Athanasios Nikolaou, Jorge Merino-Gutierrez, Isaac Abrahams, Nasima Kanwal, Jonathan C. Knowles, Andrew J. Smith, Glen J. Smales, Daniela Carta

RSC advances(2023)

Cited 0|Views10
No score
Abstract
Mesoporous glasses are a promising class of bioresorbable biomaterials characterized by high surface area and extended porosity in the range of 2 to 50 nm. These peculiar properties make them ideal materials for the controlled release of therapeutic ions and molecules. Whilst mesoporous silicate-based glasses (MSG) have been widely investigated, much less work has been done on mesoporous phosphate-based glasses (MPG). In the present study, MPG in the P2O5-CaO-Na2O system, undoped and doped with 1, 3, and 5 mol% of Cu ions were synthesized via a combination of the sol-gel method and supramolecular templating. The non-ionic triblock copolymer Pluronic P123 was used as a templating agent. The porous structure was studied via a combination of Scanning Electron Microscopy (SEM), Small-Angle X-ray Scattering (SAXS), and N-2 adsorption-desorption analysis at 77 K. The structure of the phosphate network was investigated via solid state P-31 Magic Angle Spinning Nuclear Magnetic Resonance (P-31 MAS-NMR) and Fourier Transform Infrared (FTIR) spectroscopy. Degradation studies, performed in water via Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES), showed that phosphates, Ca2+, Na+ and Cu ions are released in a controlled manner over a 7 days period. The controlled release of Cu, proportional to the copper loading, imbues antibacterial properties to MPG. A significant statistical reduction of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacterial viability was observed over a 3 days period. E. coli appeared to be more resistant than S. aureus to the antibacterial effect of copper. This study shows that copper doped MPG have great potential as bioresorbable materials for controlled delivery of antibacterial ions.
More
Translated text
Key words
antibacterial cu ions,sol–gel chemistry,phosphate-based
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined