Coexistence of Au single atoms and Au nanoparticles on NiAl-LDH for selective electrooxidation of benzyl alcohol to benzaldehyde.

Nanoscale(2023)

引用 0|浏览13
暂无评分
摘要
Introducing different active sites into heterogeneous catalysts provides new prospects to address the challenges in single-atom catalysis. Herein, the Au single atoms together and the Au nanoparticles were loaded onto NiAl-LDH by a facile impregnation-reduction method for the first time, resulting in the formation of Au-NiAl-LDH, in which abundant Au single atoms are located around the Au nanoparticles with ∼5 nm size. When applied in the electrocatalytic benzyl alcohol oxidation reaction (BAOR), the as-prepared Au-NiAl-LDH exhibits a remarkable selectivity of 91% and 177.63 μmol for benzaldehyde in 5 hours, while in contrast examples using solely Au single atom loaded NiAl-LDH (Au-NiAl-LDH) and solely Au nanoparticle loaded NiAl-LDH (Au-NiAl-LDH) can only realize 87.36 μmol production (75% selectivity) and 48.90 μmol production (28% selectivity) of benzaldehyde, respectively. Such a dramatic difference can be attributed to the synergistic effects of Au single atoms and Au nanoparticles. DFT calculation results reveal that for Au-NiAl-LDH, Au single atoms promote the dehydrogenation capacity of LDH laminates, while Au nanoparticles offer adsorption sites for the electrophilic attachment of benzyl alcohol.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要