A formamidopyrimidine derivative from the deoxyguanosine adduct produced by food contaminant acrylamide induces DNA replication block and mutagenesis.

The Journal of biological chemistry(2023)

引用 0|浏览13
暂无评分
摘要
Acrylamide, a common food contaminant, is metabolically activated to glycidamide, which reacts with DNA at the N7 position of dG, forming N7-(2-carbamoyl-2-hydroxyethyl)-dG (GA7dG). Owing to its chemical lability, the mutagenic potency of GA7dG has not yet been clarified. We found that GA7dG undergoes ring-opening hydrolysis to form N6-(2-deoxy-d-erythro-pentofuranosyl)-2,6-diamino-3,4-dihydro-4-oxo-5-[N-(2-carbamoyl-2-hydroxyethyl)formamido]pyrimidine (GA-FAPy-dG), even at neutral pH. Therefore, we aimed to examine the effects of GA-FAPy-dG on the efficiency and fidelity of DNA replication using an oligonucleotide carrying GA-FAPy-9-(2-deoxy-2-fluoro-β-d-arabinofuranosyl)guanine (dfG), a 2'-fluorine substituted analog of GA-FAPy-dG. GA-FAPy-dfG inhibited primer extension by both human replicative DNA polymerase ε and the translesion DNA synthesis polymerases (Polη, Polι, Polκ, and Polζ) and reduced the replication efficiency by less than half in human cells, with single base substitution at the site of GA-FAPy-dfG. Unlike other formamidopyrimidine derivatives, the most abundant mutation was G:C > A:T transition, which was decreased in Polκ- or REV1-KO cells. Molecular modeling suggested that a 2-carbamoyl-2-hydroxyethyl group at the N5 position of GA-FAPy-dfG can form an additional H-bond with thymidine, thereby contributing to the mutation. Collectively, our results provide further insight into the mechanisms underlying the mutagenic effects of acrylamide.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要