谷歌浏览器插件
订阅小程序
在清言上使用

Manure-derived hydrochar superior to manure: Reducing non-point pollution risk by altering nitrogen and phosphorus fugacity in the soil-water system.

Waste management (New York, N.Y.)(2023)

引用 0|浏览8
暂无评分
摘要
Hydrothermal carbonization (HTC) technology is an emerging technology for the disposal of manure-based wet wastes. However, the effects of manure-derived hydrochar inputs to agricultural soils on nitrogen (N) and phosphorus (P) morphology and conversion in soil-water systems remain largely unexplored. In this study, pig and cattle manure (PM and CM), and their derived hydrochar (PCs and CCs) were applied to agricultural soils, with changes in nutrient morphology and enzyme activities related to N and P transformation in the soil-water systems observed through flooded incubation experiments. The results showed that floodwater ammonia N concentrations were reduced by 12.9-29.6% for PCs relative to PM, and 21.6-36.9% for CCs relative to CM, respectively. Moreover, floodwater total P concentrations of PCs and CCs were reduced by 11.7-20.7% relative to PM and CM. Soil enzyme activities closely related to N and P transformations in the soil-water system responded differently to manure and manure-derived hydrochar application. Compared to manure, the application of manure-derived hydrochar inhibited soil urease and acid phosphatase activity by up to 59.4% and 20.3%, respectively, whereas it had significant promotion effects on soil nitrate reductase (∼69.7%) and soil nitrite reductase (∼64.0%). The products of manure after HTC treatments have the characteristics of organic fertilizers, and the fertilization effects of PCs are more prominent than CCs, which are subject to further verification in field trials. Our findings improve the current understanding of manure-derived organic matter affecting N and P conversions in soil-water systems and the risk for non-point source pollution.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要