CXCR4, regulated by HIF1A, promotes endometrial breakdown via CD45+ leukocyte recruitment in a mouse model of menstruation.

Reproductive biology(2023)

引用 0|浏览6
暂无评分
摘要
Menstruation is a specific physiological phenomenon in female humans that is regulated by complex molecular mechanisms. However, the molecular network involved in menstruation remains incompletely understood. Previous studies have suggested that C-X-C chemokine receptor 4 (CXCR4) is involved; however, how CXCR4 participates in endometrial breakdown remains unclear, as do its regulatory mechanisms. This study aimed to clarify the role of CXCR4 in endometrial breakdown and its regulation by hypoxia-inducible factor-1 alpha (HIF1A). We first confirmed that CXCR4 and HIF1A protein levels were significantly increased during the menstrual phase compared with the late secretory phase using immunohistochemistry. In our mouse model of menstruation, real-time PCR, western blotting, and immunohistochemistry showed that CXCR4 mRNA and protein expression levels gradually increased from 0 to 24 h after progesterone withdrawal during endometrial breakdown. HIF1A mRNA and HIF1A nuclear protein levels significantly increased and peaked at 12 h after progesterone withdrawal. Endometrial breakdown was significantly suppressed by the CXCR4 inhibitor AMD3100 and the HIF1A inhibitor 2-methoxyestradiol in our mouse model, and HIF1A inhibition also suppressed CXCR4 mRNA and protein expression. In vitro studies using human decidual stromal cells showed that CXCR4 and HIF1A mRNA expression levels were increased by progesterone withdrawal and that HIF1A knockdown significantly suppressed the elevation in CXCR4 mRNA expression. CD45+ leukocyte recruitment during endometrial breakdown was suppressed by both AMD3100 and 2-methoxyestradiol in our mouse model. Taken together, our preliminary findings suggest that endometrial CXCR4 expression is regulated by HIF1A during menstruation and may promote endometrial breakdown, potentially via leukocyte recruitment.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要