Role of Extracellular Vesicles In The Propagation of Lung Fibrosis in Systemic Sclerosis

Arthritis & rheumatology (Hoboken, N.J.)(2023)

引用 0|浏览6
暂无评分
摘要
ObjectivesSystemic sclerosis (SSc) has the highest mortality rate among the rheumatic diseases, with lung fibrosis leading as the cause of death. A characteristic of severe SSc-related lung fibrosis is its progressive nature. Although most research has focused on the pathology of the fibrosis, the mechanism mediating the fibrotic spread remains unclear. We hypothesized that extracellular vesicle (EV) communication drives the propagation of SSc lung fibrosis.MethodsEVs were isolated from normal (NL) or SSc-derived human lungs and primary lung fibroblasts (pLFs). EVs were also isolated from human fibrotic lungs and pLFs induced experimentally with transforming growth factor-& beta; (TGF & beta;). Fibrotic potency of EVs was assessed using functional assays in vitro and in vivo. Transmission electron microscopy, nanoparticle tracking analysis, real-time quantitative polymerase chain reaction (RT-qPCR), immunoblotting, and immunofluorescence were used to analyze EVs, their cargo, extracellular matrix (ECM) fractions, and conditioned media.ResultsSSc lungs and pLFs released significantly more EVs than NL lungs, and their EVs showed increased fibrotic content and activity. TGF & beta;-stimulated NL lung cores and pLFs increased packaging of fibrotic proteins, including fibronectin, collagens, and TGF & beta;, into released EVs. The EVs induced a fibrotic phenotype in recipient pLFs and in vivo in mouse lungs. Furthermore, EVs interacted with and contributed to the ECM. Finally, suppressing EV release in vivo reduced severity of murine lung fibrosis.ConclusionsOur findings highlight EV communication as a novel mechanism for propagation of SSc lung fibrosis. Identifying therapies that reduce EV release, activity, and/or fibrotic cargo in SSc patient lungs may be a viable therapeutic strategy to improve fibrosis.
更多
查看译文
关键词
extracellular vesicles,systemic sclerosis,lung fibrosis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要