Dynamic solution structures of whole human NAP1 dimer bound to one and two histone H2A-H2B heterodimers obtained by integrative methods.

Journal of molecular biology(2023)

引用 1|浏览9
暂无评分
摘要
Nucleosome assembly protein 1 (NAP1) binds to histone H2A-H2B heterodimers, mediating their deposition on and eviction from the nucleosome. Human NAP1 (hNAP1) consists of a dimerization core domain and intrinsically disordered C-terminal acidic domain (CTAD), both of which are essential for H2A-H2B binding. Several structures of NAP1 proteins bound to H2A-H2B exhibit binding polymorphisms of the core domain, but the distinct structural roles of the core and CTAD domains remain elusive. Here, we have examined dynamic structures of the full-length hNAP1 dimer bound to one and two H2A-H2B heterodimers by integrative methods. Nuclear magnetic resonance (NMR) spectroscopy of full-length hNAP1 showed CTAD binding to H2A-H2B. Atomic force microscopy revealed that hNAP1 forms oligomers of tandem repeated dimers; therefore, we generated a stable dimeric hNAP1 mutant exhibiting the same H2A-H2B binding affinity as wild-type hNAP1. Size exclusion chromatography (SEC), multi-angle light scattering (MALS) and small angle X-ray scattering (SAXS), followed by modelling and molecular dynamics simulations, have been used to reveal the stepwise dynamic complex structures of hNAP1 binding to one and two H2A-H2B heterodimers. The first H2A-H2B dimer binds mainly to the core domain of hNAP1, while the second H2A-H2B binds dynamically to both CTADs. Based on our findings, we present a model of the eviction of H2A-H2B from nucleosomes by NAP1.
更多
查看译文
关键词
histone chaperone,NMR,molecular dynamics simulation,SAXS,AFM
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要