Bioavailability and translocation of platinum nanoparticles and platinum ions in rice (Oryza sativa L.): Nanoparticles biosynthesis and size-dependent transformation.

The Science of the total environment(2023)

引用 0|浏览1
暂无评分
摘要
Metal nanoparticles accumulation and bioavailability in plants raised much attention, specifically transformation and transportation of nanoparticles and their corresponding ions in plants are still unknown. In this work, rice seedlings were exposed to platinum nanoparticles (PtNPs) (with three sizes of 25, 50, and 70 nm) and Pt ions (with doses of 1, 2, and 5 mg/L) to investigate the influences of particle size and Pt form on bioavailability and translocation mechanism of metal nanoparticles. Results based on single particle ICP-MS (SP-ICP-MS) demonstrated the biosynthesis of PtNPs in Pt ions treated rice seedlings. The particle size ranges at 75-79.3 nm were detected in Pt ions exposed rice roots, and further migrated up to rice shoots at 21.7-44.3 nm. After exposed to PtNP-25, the particles could transfer to shoots with the original size distribution detected in roots, even with the PtNPs dose change. PtNP-50 and PtNP-70 translocated to shoots with the particle size increase. For the rice exposure with three dose levels, PtNP-70 had the highest number-based bioconcentration factors (NBCFs) in all Pt species, while Pt ions had the highest bioconcentration factors (BCFs), a range of 1.43-2.04. All PtNPs and Pt ions could be accumulated in rice plants and further transferred to shoots, and particle biosynthesis was proved through SP-ICP-MS. The finding could help us better understand the influence of particle size and form on the transformations of PtNPs in environment.
更多
查看译文
关键词
Platinum nanoparticles (PtNPs),Platinum ion,Accumulation mechanism,Biosynthesis,Translocation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要