Silencing of circCacna1c Inhibits ISO-Induced Cardiac Hypertrophy through miR-29b-2-5p/NFATc1 Axis

Cells(2023)

引用 0|浏览0
暂无评分
摘要
Pathological cardiac hypertrophy is one of the notable causes of heart failure. Circular RNAs (circRNAs) have been studied in association with cardiac hypertrophy; however, the mechanisms by which circRNAs regulate cardiac hypertrophy remain unclear. In this study, we identified a new circRNA, named circCacna1c, in cardiac hypertrophy. Adult male C57BL/6 mice and H9c2 cells were treated with isoprenaline hydrochloride (ISO) to establish a hypertrophy model. We found that circCacna1c was upregulated in ISO-induced hypertrophic heart tissue and H9c2 cells. Western blot and quantitative real-time polymerase chain reaction showed that silencing circCacna1c inhibited hypertrophic gene expression in ISO-induced H9c2 cells. Mechanistically, circCacna1c competitively bound to miR-29b-2-5p in a dual-luciferase reporter assay, which was downregulated in ISO-induced hypertrophic heart tissue and H9c2 cells. MiR-29b-2-5p inhibited the nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 1 (NFATc1) to control hypertrophic gene expression. After silencing circCacna1c, the expression of miR-29b-2-5p increased, which reduced hypertrophic gene expression by inhibiting NFATc1 expression. Together, these experiments indicate that circCacna1c promotes ISO-induced pathological hypertrophy through the miR-29b-2-5p/NFATc1 axis.
更多
查看译文
关键词
circRNA,circCacna1c,miR-29b-2-5p,NFATc1,cardiac hypertrophy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要