Stability of Porous Polymeric Membranes in Amine Solvents for Membrane Contactor Applications.

Membranes(2023)

Cited 0|Views9
No score
Abstract
Membrane gas-liquid contactors have great potential to meet the challenges of amine CO capture. In this case, the most effective approach is the use of composite membranes. However, to obtain these, it is necessary to take into account the chemical and morphological resistance of membrane supports to long-term exposure to amine absorbents and their oxidative degradation products. In this work, we studied the chemical and morphological stability of a number of commercial porous polymeric membranes exposed to various types of alkanolamines with the addition of heat-stable salt anions as a model of real industrial CO amine solvents. The results of the physicochemical analysis of the chemical and morphological stability of porous polymer membranes after exposure to alkanolamines, their oxidative degradation products, and oxygen scavengers were presented. According to the results of studies by FTIR spectroscopy and AFM, a significant destruction of porous membranes based on polypropylene (PP), polyvinylidenefluoride (PVDF), polyethersulfone (PES) and polyamide (nylon, PA) was revealed. At the same time, the polytetrafluoroethylene (PTFE) membranes had relatively high stability. On the basis of these results, composite membranes with porous supports that are stable in amine solvents can be successfully obtained to create liquid-liquid and gas-liquid membrane contactors for membrane deoxygenation.
More
Translated text
Key words
membrane stability, carbon dioxide, membrane contactor, oxygen removal, PP, PVDF, PTFE, PES, PA
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined