Exposure to Cis- and Trans-regioisomers of S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)-glutathione result in quantitatively and qualitatively different cellular effects in RPTEC/TERT1 cells.

Toxicology letters(2023)

引用 0|浏览16
暂无评分
摘要
Bioactivation of trichloroethylene (TCE) via glutathione conjugation is associated with several adverse effects in the kidney and other extrahepatic tissues. Of the three regioisomeric conjugates formed, S-(1,2-trans-dichlorovinyl)-glutathione (1,2-trans-DCVG), S-(1,2-cis-dichlorovinyl)-glutathione and S-(2,2-dichlorovinyl)-glutathione, only 1,2-trans-DCVG and its corresponding cysteine-conjugate, 1,2-trans-DCVC, have been subject to extensive mechanistic studies. In the present study, the metabolism and cellular effects of 1,2-cis-DCVG, the major regioisomer formed by rat liver fractions, and 1,2-cis-DCVC were investigated for the first time using RPTEC/TERT1-cells as in vitro renal model. In contrast to 1,2-trans-DCVG/C, the cis-regioisomers showed minimal effects on cell viability and mitochondrial respiration. Transcriptomics analysis showed that both 1,2-cis-DCVC and 1,2-trans-DCVC caused Nrf2-mediated antioxidant responses, with 3µM as lowest effective concentration. An ATF4-mediated integrated stress response and p53-mediated responses were observed starting from 30µM for 1,2-trans-DCVC and 125µM for 1,2-cis-DCVC. Comparison of the metabolism of the DCVG regioisomers by LC/MS showed comparable rates of processing to their corresponding DCVC. No detectable N-acetylation was observed in RPTEC/TERT1 cells. Instead, N-glutamylation of DCVC to form N-γ-glutamyl-S-(dichlorovinyl)-L-cysteine was identified as a novel route of metabolism. The results suggest that 1,2-cis-DCVC may be of less toxicological concern for humans than 1,2-trans-DCVC, considering its lower intrinsic toxicity and lower rate of formation by human liver fractions.
更多
查看译文
关键词
different cellular effects,rptec/tert1,trans-regioisomers,l-cysteine
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要