Chromatin Compaction in Noncompaction Cardiomyopathy.

Circulation research(2023)

Cited 0|Views8
No score
Abstract
HomeCirculation ResearchVol. 133, No. 1Chromatin Compaction in Noncompaction Cardiomyopathy No AccessEditorialRequest AccessFull TextAboutView Full TextView PDFView EPUBSections ToolsAdd to favoritesDownload citationsTrack citationsPermissions ShareShare onFacebookTwitterLinked InMendeleyReddit Jump toNo AccessEditorialRequest AccessFull TextChromatin Compaction in Noncompaction Cardiomyopathy Timothy J. Cashman and Chinmay M. Trivedi Timothy J. CashmanTimothy J. Cashman https://orcid.org/0000-0001-6238-129X Division of Cardiovascular Medicine (T.J.C., C.M.T.), UMass Chan Medical School, Worcester, MA. Department of Medicine (T.J.C., C.M.T.), UMass Chan Medical School, Worcester, MA. Search for more papers by this author and Chinmay M. TrivediChinmay M. Trivedi Correspondence to: Chinmay M. Trivedi, MD, PhD, Albert Sherman Center, AS7-1047, 368 Plantation St, Worcester, MA 01605. Email E-mail Address: [email protected] https://orcid.org/0000-0002-3544-0474 Division of Cardiovascular Medicine (T.J.C., C.M.T.), UMass Chan Medical School, Worcester, MA. Department of Medicine (T.J.C., C.M.T.), UMass Chan Medical School, Worcester, MA. Department of Molecular, Cell, and Cancer Biology (C.M.T.), UMass Chan Medical School, Worcester, MA. Search for more papers by this author Originally published22 Jun 2023https://doi.org/10.1161/CIRCRESAHA.123.323015Circulation Research. 2023;133:68–70This article is a commentary on the followingMissense Mutation in Human CHD4 Causes Ventricular Noncompaction by Repressing ADAMTS1FootnotesFor Sources of Funding and Disclosures, see page 70.The opinions expressed in this article are not necessarily those of the editors or of the American Heart Association.Correspondence to: Chinmay M. Trivedi, MD, PhD, Albert Sherman Center, AS7-1047, 368 Plantation St, Worcester, MA 01605. Email chinmay.trivedi@umassmed.eduReferences1. Engberding R, Bender F. [Echocardiographic detection of persistent myocardial sinusoids].Z Kardiol. 1984; 73:786–788.MedlineGoogle Scholar2. Chin TK, Perloff JK, Williams RG, Jue K, Mohrmann R. Isolated noncompaction of left ventricular myocardium. A study of eight cases.Circulation. 1990; 82:507–513. doi: 10.1161/01.cir.82.2.507LinkGoogle Scholar3. van Waning JI, Caliskan K, Hoedemaekers YM, van Spaendonck-Zwarts KY, Baas AF, Boekholdt SM, van Melle JP, Teske AJ, Asselbergs FW, Backx A, et al. Genetics, clinical features, and long-term outcome of noncompaction cardiomyopathy.J Am Coll Cardiol. 2018; 71:711–722. doi: 10.1016/j.jacc.2017.12.019CrossrefMedlineGoogle Scholar4. Gerecke BJ, Engberding R. Noncompaction cardiomyopathy-history and current knowledge for clinical practice.J Clin Med. 2021; 10:2457. doi: 10.3390/jcm10112457CrossrefMedlineGoogle Scholar5. Almeida AG, Pinto FJ. Non-compaction cardiomyopathy.Heart. 2013; 99:1535–1542. doi: 10.1136/heartjnl-2012-302048CrossrefMedlineGoogle Scholar6. Ross SB, Jones K, Blanch B, Puranik R, McGeechan K, Barratt A, Semsarian C. A systematic review and meta-analysis of the prevalence of left ventricular non-compaction in adults.Eur Heart J. 2020; 41:1428–1436. doi: 10.1093/eurheartj/ehz317CrossrefMedlineGoogle Scholar7. Jin SC, Homsy J, Zaidi S, Lu Q, Morton S, DePalma SR, Zeng X, Qi H, Chang W, Sierant MC, et al. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands.Nat Genet. 2017; 49:1593–1601. doi: 10.1038/ng.3970CrossrefMedlineGoogle Scholar8. Shi W, Scialdone AP, Emerson JI, Mei L, Wasson LK, Davies HA, Seidman CE, Seidman JG, Cook JG, Conlon FL. A missense mutation in human chd4 causes ventricular noncompaction by repressing adamts1.Circ Res. 2023; 133:48–67. doi: 10.1161/CIRCRESAHA.122.322223LinkGoogle Scholar9. Xue Y, Wong J, Moreno GT, Young MK, Cote J, Wang W. Nurd, a novel complex with both atp-dependent chromatin-remodeling and histone deacetylase activities.Mol Cell. 1998; 2:851–861. doi: 10.1016/s1097-2765(00)80299-3CrossrefMedlineGoogle Scholar10. Allen HF, Wade PA, Kutateladze TG. The nurd architecture.Cell Mol Life Sci. 2013; 70:3513–3524. doi: 10.1007/s00018-012-1256-2CrossrefMedlineGoogle Scholar11. Bornelov S, Reynolds N, Xenophontos M, Gharbi S, Johnstone E, Floyd R, Ralser M, Signolet J, Loos R, Dietmann S, et al. The nucleosome remodeling and deacetylation complex modulates chromatin structure at sites of active transcription to fine-tune gene expression.Mol Cell. 2018; 71:56–72.e4. doi: 10.1016/j.molcel.2018.06.003CrossrefMedlineGoogle Scholar12. Homsy J, Zaidi S, Shen Y, Ware JS, Samocha KE, Karczewski KJ, DePalma SR, McKean D, Wakimoto H, Gorham J, et al. De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies.Science. 2015; 350:1262–1266. doi: 10.1126/science.aac9396CrossrefMedlineGoogle Scholar13. Wilczewski CM, Hepperla AJ, Shimbo T, Wasson L, Robbe ZL, Davis IJ, Wade PA, Conlon FL. Chd4 and the nurd complex directly control cardiac sarcomere formation.Proc Natl Acad Sci USA. 2018; 115:6727–6732. doi: 10.1073/pnas.1722219115CrossrefMedlineGoogle Scholar14. Lewandowski SL, Janardhan HP, Smee KM, Bachman M, Sun Z, Lazar MA, Trivedi CM. Histone deacetylase 3 modulates tbx5 activity to regulate early cardiogenesis.Hum Mol Genet. 2014; 23:3801–3809. doi: 10.1093/hmg/ddu093CrossrefMedlineGoogle Scholar15. Milstone ZJ, Saheera S, Bourke LM, Shpilka T, Haynes CM, Trivedi CM. Histone deacetylases 1 and 2 silence cryptic transcription to promote mitochondrial function during cardiogenesis.Sci Adv. 2020; 6:eaax5150. doi: 10.1126/sciadv.aax5150CrossrefMedlineGoogle Scholar16. Gelb B, Brueckner M, Chung W, Goldmuntz E, Kaltman J, Kaski JP, Kim R, Kline J, Mercer-Rosa L, Porter G, et al; Pediatric Cardiac Genomics Consortium. The congenital heart disease genetic network study: rationale, design, and early results.Circ Res. 2013; 112:698–706. doi: 10.1161/CIRCRESAHA.111.300297LinkGoogle Scholar17. Stankunas K, Hang CT, Tsun ZY, Chen H, Lee NV, Wu JI, Shang C, Bayle JH, Shou W, Iruela-Arispe ML, et al. Endocardial brg1 represses adamts1 to maintain the microenvironment for myocardial morphogenesis.Dev Cell. 2008; 14:298–311. doi: 10.1016/j.devcel.2007.11.018CrossrefMedlineGoogle Scholar18. Cashman TJ, Trivedi CM. N-acetyl transferases: new insights into human congenital cardiovascular defects.Circ Res. 2021; 128:1170–1172. doi: 10.1161/CIRCRESAHA.121.319049LinkGoogle Scholar eLetters(0)eLetters should relate to an article recently published in the journal and are not a forum for providing unpublished data. Comments are reviewed for appropriate use of tone and language. Comments are not peer-reviewed. Acceptable comments are posted to the journal website only. Comments are not published in an issue and are not indexed in PubMed. Comments should be no longer than 500 words and will only be posted online. References are limited to 10. Authors of the article cited in the comment will be invited to reply, as appropriate.Comments and feedback on AHA/ASA Scientific Statements and Guidelines should be directed to the AHA/ASA Manuscript Oversight Committee via its Correspondence page.Sign In to Submit a Response to This Article Previous Back to top Next FiguresReferencesRelatedDetailsRelated articlesMissense Mutation in Human CHD4 Causes Ventricular Noncompaction by Repressing ADAMTS1Wei Shi, et al. Circulation Research. 2023;133:48-67 June 23, 2023Vol 133, Issue 1 Advertisement Article InformationMetrics © 2023 American Heart Association, Inc.https://doi.org/10.1161/CIRCRESAHA.123.323015PMID: 37347831 Originally publishedJune 22, 2023 Keywordsheart failureheart defects, congenitalepigenomicscardiomyopathiesEditorialPDF download Advertisement
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined