Shared-Specific Feature Learning With Bottleneck Fusion Transformer for Multi-Modal Whole Slide Image Analysis

IEEE transactions on medical imaging(2023)

引用 1|浏览3
暂无评分
摘要
The fusion of multi-modal medical data is essential to assist medical experts to make treatment decisions for precision medicine. For example, combining the whole slide histopathological images (WSIs) and tabular clinical data can more accurately predict the lymph node metastasis (LNM) of papillary thyroid carcinoma before surgery to avoid unnecessary lymph node resection. However, the huge-sized WSI provides much more high-dimensional information than low-dimensional tabular clinical data, making the information alignment challenging in the multi-modal WSI analysis tasks. This paper presents a novel transformer-guided multi-modal multi-instance learning framework to predict lymph node metastasis from both WSIs and tabular clinical data. We first propose an effective multi-instance grouping scheme, named siamese attention-based feature grouping (SAG), to group high-dimensional WSIs into representative low-dimensional feature embeddings for fusion. We then design a novel bottleneck shared-specific feature transfer module (BSFT) to explore the shared and specific features between different modalities, where a few learnable bottleneck tokens are utilized for knowledge transfer between modalities. Moreover, a modal adaptation and orthogonal projection scheme were incorporated to further encourage BSFT to learn shared and specific features from multi-modal data. Finally, the shared and specific features are dynamically aggregated via an attention mechanism for slide-level prediction. Experimental results on our collected lymph node metastasis dataset demonstrate the efficiency of our proposed components and our framework achieves the best performance with AUC (area under the curve) of 97.34%, outperforming the state-of-the-art methods by over 1.27%.
更多
查看译文
关键词
Whole slide image,multi-modal multi-instance learning,knowledge transfer,transformer
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要