Fabrication of a Floatable Micron-Sized Enzyme Device Using Diatom Frustules.

ACS omega(2023)

引用 0|浏览2
暂无评分
摘要
Immobilization of enzymes has been widely reported due to their reusability, thermal stability, better storage abilities, and so on. However, there are still problems that immobilized enzymes do not have free movements to react to substrates during enzyme reactions and their enzyme activity becomes weak. Moreover, when only the porosity of support materials is focused, some problems such as enzyme distortion can negatively affect the enzyme activity. Being a solution to these problems, a new function "floatability" of enzyme devices has been discussed. A "floatable" micron-sized enzyme device was fabricated to enhance the free movements of immobilized enzymes. Diatom frustules, natural nanoporous biosilica, were used to attach papain enzyme molecules. The floatability of the frustules, evaluated by macroscopic and microscopic methods, was significantly better than that of four other SiO materials, such as diatomaceous earth (DE), which have been widely used to fabricate micron-sized enzyme devices. The frustules were fully suspended at 30 °C for 1 h without stirring, although they settled at room temperature. When enzyme assays were performed at room temperature, 37, and 60 °C with or without external stirring, the proposed frustule device showed the highest enzyme activity under all conditions among papain devices similarly prepared using other SiO materials. It was confirmed by the free papain experiments that the frustule device was active enough for enzyme reactions. Our data indicated that the high floatability of the reusable frustule device, and its large surface area, is effective in maximizing enzyme activity due to the high probability to react to substrates.
更多
查看译文
关键词
diatom frustules,enzyme,micron-sized
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要