An initiator-free and solvent-free in-situ self-catalyzed crosslinked polymer electrolyte for all-solid-state lithium-metal batteries.

Journal of colloid and interface science(2023)

引用 0|浏览2
暂无评分
摘要
Linear polymer (e.g. polyethylene oxide, PEO) based electrolytes have been widely studied due to their flexibility and relatively good contact against electrodes. However, the linear polymers are prone to crystallization at room temperature and melting at moderate temperature, restricting their application in lithium metal batteries. To address these problems, a self-catalyzed crosslinked polymer electrolyte (CPE) was designed and prepared by the reaction of poly (ethylene glycol diglycidyl ether) (PEGDGE) and polyoxypropylenediamine (PPO) with only the bistrifluoromethanesulfonimide lithium salt (LiTFSI) added and with no any initiators. LiTFSI catalyzed the reaction by reducing the activation energy to form a crosslinked network structure, which was identified by calculation, NMR and FTIR. The as-prepared CPE has high resilience and a low glass transition temperature (Tg = -60 °C). Meanwhile, the solvent-free in-situ polymerization technique has been adopted in the assembly of the CPE with electrodes to decrease the interfacial impedance greatly and improve the ionic conductivity to 2.05 × 10 S cm and 2.55 × 10 S cm at room temperature and 75 °C, respectively. As a result, the in-situ LiFeO/CPE/Li battery exhibits outstanding thermal and electrochemical stability at 75 °C. Our work has proposed an initiator-free and solvent-free in-situ self-catalyzed strategy of preparing high performance crosslinked solid polymer electrolytes.
更多
查看译文
关键词
lithium-metal lithium-metal batteries,polymer,initiator-free,solvent-free,in-situ,self-catalyzed,all-solid-state
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要