Double-Layer ePTFE-Reinforced Membrane Electrode Assemblies Prepared by a Reverse Membrane Deposition Process for High-Performance and Durable Proton Exchange Membrane Fuel Cells.

ACS applied materials & interfaces(2023)

引用 1|浏览2
暂无评分
摘要
To promote further commercialization of proton exchange membrane (PEM) fuel cells, developing a novel preparation method for high-performance and durable membrane electrode assemblies (MEAs) is imperative. In this study, we adopt the reverse membrane deposition process and expanded polytetrafluoroethylene (ePTFE) reinforcing technology to optimize the interface combination and durability of MEAs simultaneously for the preparation of novel MEAs with double-layer ePTFE reinforcement skeletons (DR-MEA). With the wet-contact between the liquid ionomer solution and porous catalyst layers (CLs), a tight 3D PEM/CL interface is formed in the DR-MEA. Based on this enhanced PEM/CL interface combination, the DR-MEA exhibits a significantly increased electrochemical surface area, reduced interfacial resistance, and improved power performance compared with a conventional MEA (C-MEA) based on a catalyst-coated membrane method. Furthermore, with the reinforcement of double-layer ePTFE skeletons and the support of rigid electrodes for the membranes, the DR-MEA demonstrates less mechanical degradation than the C-MEA after wet/dry cycle test, reflected in lower increase in hydrogen crossover current, interfacial resistance, and charge-transfer resistance and reduced power performance attenuation. With less mechanical degradation, the DR-MEA therefore shows less chemical degradation than the C-MEA after an open-circuit voltage durability test.
更多
查看译文
关键词
membrane electrode assemblies, proton exchange membranes, fuel cells, catalyst, interfaces, durability
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要