A pectin-based photoactivated bactericide nanosystem for achieving an improved utilization rate, photostability and targeted delivery of hematoporphyrin.

Journal of materials chemistry. B(2023)

Cited 0|Views4
No score
Abstract
Photoactivated pesticides have many advantages, such as high activity, low toxicity, and no drug resistance. However, poor photostability and a low utilization rate limit their practical application. Herein, the photosensitizer hematoporphyrin (HP) was used as a photoactivated pesticide, covalently linked with pectin (PEC) ester bonds, to prepare an amphiphilic polymer pro-bactericide, and subsequently self-assembled in aqueous solutions to obtain an esterase-triggered nanobactericide delivery system. The fluorescence quenching effect due to the aggregation of HP in nanoparticles (NPs) enabled the inhibition of photodegradation of HP in this system. Esterase stimulation could trigger HP release and increase its photodynamic activity. Antibacterial assays have shown that the NPs had potent antibacterial capacity, almost completely inactivating bacteria after 60 min of exposure to light. The NPs had good adherence to the leaves. Safety assessment indicated that the NPs have no obvious toxic effects on plants. Antibacterial studies on plants have shown that the NPs have excellent antibacterial effects on infected plants. These results provide a new strategy for obtaining a photoactivated bactericide nanosystem with a high utilization rate and good photostability and targeting ability.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined