A Photomodulable Bacteriophage-Spike Nanozyme Enables Dually Enhanced Biofilm Penetration and Bacterial Capture for Photothermal-Boosted Catalytic Therapy of MRSA Infections.

Advanced science (Weinheim, Baden-Wurttemberg, Germany)(2023)

引用 3|浏览9
暂无评分
摘要
Nanozymes, featuring intrinsic biocatalytic effects and broad-spectrum antimicrobial properties, are emerging as a novel antibiotic class. However, prevailing bactericidal nanozymes face a challenging dilemma between biofilm penetration and bacterial capture capacity, significantly impeding their antibacterial efficacy. Here, this work introduces a photomodulable bactericidal nanozyme (ICG@hMnO ), composed of a hollow virus-spiky MnO nanozyme integrated with indocyanine green, for dually enhanced biofilm penetration and bacterial capture for photothermal-boosted catalytic therapy of bacterial infections. ICG@hMnO demonstrates an exceptional capability to deeply penetrate biofilms, owing to its pronounced photothermal effect that disrupts the compact structure of biofilms. Simultaneously, the virus-spiky surface significantly enhances the bacterial capture capacity of ICG@hMnO . This surface acts as a membrane-anchored generator of reactive oxygen species and a glutathione scavenger, facilitating localized photothermal-boosted catalytic bacterial disinfection. Effective treatment of methicillin-resistant Staphylococcus aureus-associated biofilm infections is achieved using ICG@hMnO , offering an appealing strategy to overcome the longstanding trade-off between biofilm penetration and bacterial capture capacity in antibacterial nanozymes. This work presents a significant advancement in the development of nanozyme-based therapies for combating biofilm-related bacterial infections.
更多
查看译文
关键词
dually enhanced biofilm penetration,mrsa infections,bacterial capture
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要