Chrome Extension
WeChat Mini Program
Use on ChatGLM

Facile UV-Induced Surface Covalent Modification to Fabricate Durable Superhydrophobic Fabric for Efficient Oil-Water Separation

Mengmeng Zhou, Xiaohui Liu, Fengjiao Xu, Yongbing Pei, Lianbin Wu, Long-Cheng Tang

POLYMERS(2023)

Cited 0|Views13
No score
Abstract
In this work, a durable superhydrophobic fabric was fabricated by using a facile UV-induced surface covalent modification strategy. 2-isocyanatoethylmethacrylate (IEM) containing isocyanate groups can react with the pre-treated hydroxylated fabric, producing IEM molecules covalently grafted onto the fabric's surface, and the double bonds of IEM and dodecafluoroheptyl methacrylate (DFMA) underwent a photo-initiated coupling reaction under UV light radiation, resulting in the DFMA molecules further grafting onto the fabric's surface. The Fourier transform infrared, X-ray photoelectron spectroscopy and scanning electron microscopy results revealed that both IEM and DFMA were covalently grafted onto the fabric's surface. The formed rough structure and grafted low-surface-energy substance contributed to the excellent superhydrophobicity (water contact angle of similar to 162 degrees) of the resultant modified fabric. Notably, such a superhydrophobic fabric can be used for efficient oil-water separation, for example a high separation efficiency of over 98%. More importantly, the modified fabric exhibited excellent durable superhydrophobicity in harsh conditions such as immersion in organic solvents for 72 h, an acidic or alkali solution (pH = 1-12) for 48 h, undergoing laundry washing for 3 h, exposure to extreme temperatures (from 196 degrees to 120 degrees), as well as damage such as 100 cycles of tape-peeling and a 100-cycle abrasion test; the water contact angle only slightly decreased from similar to 162 degrees to 155 degrees. This was attributed to the IEM and DFMA molecules grated onto the fabric through stable covalent interactions, which could be accomplished using the facile strategy, where the alcoholysis of isocyanate and the grafting of DFMA via click coupling chemistry were integrated into one-step. Therefore, this work provides a facile one-step surface modification strategy for preparing durable superhydrophobic fabric, which is promising for efficient oil-water separation.
More
Translated text
Key words
durable,superhydrophobic,oil-water separation,fabric
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined