Chrome Extension
WeChat Mini Program
Use on ChatGLM

Ethylene controls cambium stem cell activity via promoting local auxin biosynthesis.

The New phytologist(2023)

Cited 1|Views28
No score
Abstract
The vascular cambium is the main secondary meristem in plants that produces secondary phloem (outside) and xylem (inside) on opposing sides of the cambium. The phytohormone ethylene has been implicated in vascular cambium activity, but the regulatory network underlying ethylene-mediated cambial activity remains to be elucidated. Here, we found that PETAL MOVEMENT-RELATED PROTEIN1 (RhPMP1), an ethylene-inducible HOMEODOMAIN-LEUCINE ZIPPER I transcription factor in woody plant rose (Rosa hybrida), regulates local auxin biosynthesis and auxin transport to maintain cambial activity. Knockdown of RhPMP1 resulted in smaller midveins and reduced auxin content, while RhPMP1 overexpression resulted in larger midveins and increased auxin levels compared with the wild-type plants. Furthermore, we revealed that Indole-3-pyruvate monooxygenase YUCCA 10 (RhYUC10) and Auxin transporter-like protein 2 (RhAUX2), encoding an auxin biosynthetic enzyme and an auxin influx carrier, respectively, are direct downstream targets of RhPMP1. In summary, our results suggest that ethylene promotes an auxin maximum in the cambium adjacent to the xylem to maintain cambial activity.
More
Translated text
Key words
auxin, cambium, ethylene, HD-ZIP I transcription factor, Rosa hybrida
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined