Mesenchymal stem cells (MSCs) and MSC-derived exosomes in animal models of central nervous system diseases: Targeting the NLRP3 inflammasome.

IUBMB life(2023)

Cited 1|Views13
No score
Abstract
The NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome is a multimeric protein complex that is engaged in the innate immune system and plays a vital role in inflammatory reactions. Activation of the NLRP3 inflammasome and subsequent release of proinflammatory cytokines can be triggered by microbial infection or cellular injury. The NLRP3 inflammasome has been implicated in the pathogenesis of many disorders affecting the central nervous system (CNS), ranging from stroke, traumatic brain injury, and spinal cord injury to Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, and depression. Furthermore, emerging evidence has suggested that mesenchymal stem cells (MSCs) and their exosomes may modulate NLRP3 inflammasome activation in a way that might be promising for the therapeutic management of CNS diseases. In the present review, particular focus is placed on highlighting and discussing recent scientific evidence regarding the regulatory effects of MSC-based therapies on the NLRP3 inflammasome activation and their potential to counteract proinflammatory responses and pyroptotic cell death in the CNS, thereby achieving neuroprotective impacts and improvement in behavioral impairments.
More
Translated text
Key words
CNS diseases, exosomes, inflammasomes, mesenchymal stem cells, neuroinflammation, NLRP3
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined