Cyanobacterial organic matter (COM) positive feedback aggravates lake eutrophication by changing the phosphorus release characteristics of sediments.

The Science of the total environment(2023)

引用 3|浏览6
暂无评分
摘要
Phosphorus is a key nutrient that causes eutrophication in lakes. Our investigation of 11 eutrophic lakes found that the concentrations of soluble reactive phosphorus (SRP) in the water column and EPC0 in sediments decreased with aggravated eutrophication. There was a significant negative correlation between the SRP concentrations and eutrophication parameters such as chlorophyll a (Chl-a), total phosphorus (TP) and algal biomass (P < 0.001). In addition, SRP concentrations were significantly affected by EPC0 (P < 0.001), while EPC0 was significantly affected by the content of cyanobacterial organic matter (COM) in sediments (P < 0.001). Based on these findings, we hypothesized that COM can alter the phosphorus release characteristics of sediments, including the phosphorus adsorption parameters of sediment (PAPS) and the phosphorus release rate of sediment (PRRS), thereby stabilizing SRP concentrations at lower levels and rapidly replenishing them when depleted by phytoplankton, which in turn benefits cyanobacteria due to their low SRP adaptation strategies. Simulation experiments were conducted to confirm this hypothesis by adding higher plant OM and COM to sediments. The results showed that all types of OM could significantly increase the maximum phosphorus adsorption capacity (Qmax), but only COM could reduce sediment EPC0 and promote PRRS (P < 0.001). Changes in these parameters (i.e., Qmax, EPC0, and PRRS) resulted in a larger SRP adsorption quantity and faster SRP release rate at low SRP concentrations. This promotes the competitive edge of cyanobacteria due to they have a higher affinity for phosphorus than other algae. As an important component of cyanobacteria, EPS can change the phosphorus release characteristics (i.e., PAPS and PRRS) by reducing sediment particle size and increasing sediment surface functional groups. This study revealed the positive feedback effect of COM accumulation in sediments on lake eutrophication from the perspective of phosphorus release characteristics of sediments, which provides a basic reference for the risk assessment of lake eutrophication.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要