Effects of air humidity and soil moisture on secondary metabolites in the leaves and roots of Betula pendula of different competitive status

Oecologia(2023)

Cited 2|Views15
No score
Abstract
Plant secondary metabolites (PSMs) defend plants against abiotic stresses, including those caused by climate change and against biotic stresses, such as herbivory and competition. There is a trade-off between allocating available carbon to growth and defence in stressful environments. However, our knowledge about trade-off is limited, especially when abiotic and biotic stresses co-occur. We aimed to understand the combined effect of increasing precipitation and humidity, the tree's competitive status, and canopy position on leaf secondary metabolites (LSMs) and fine root secondary metabolites (RSMs) in Betula pendula . We sampled 8-year-old B. pendula trees growing in the free air humidity manipulation (FAHM) experimental site, where treatments included elevated relative air humidity and elevated soil moisture. A high-performance liquid chromatography–quadrupole-time of flight mass spectrometer (HPLC–qTOF-MS) was used to analyse secondary metabolites. Our results showed accumulation of LSM depends on the canopy position and competitive status. Flavonoids (FLA), dihydroxybenzoic acids (HBA), jasmonates (JA) and terpene glucosides (TG) were higher in the upper canopy, and FLA, monoaryl compounds (MAR) and sesquiterpenoids (ST) were higher in dominant trees. The FAHM treatments had a more distinct effect on RSM than on LSM. The RSMs were lower in elevated air humidity and soil moisture conditions than in control conditions. The RSM content depended on the competitive status and was higher in suppressed trees. Our study suggests that young B. pendula will allocate similar amounts of carbon to constitutive chemical leaf defence, but a lower amount to root defence (per fine root biomass) under higher humidity.
More
Translated text
Key words
Climate change, Environmental humidity, Growth-defence, Phenolics, Silver birch
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined