Chrome Extension
WeChat Mini Program
Use on ChatGLM

Graphdiyne nanoplatforms for photothermal-ferroptosis combination therapy against glioblastoma.

Journal of controlled release : official journal of the Controlled Release Society(2023)

Cited 3|Views16
No score
Abstract
Glioblastoma (GBM) is one of the most malignant tumors of the central nervous system and has a poor prognosis. GBM cells are highly sensitive to ferroptosis and heat, suggesting thermotherapy-ferroptosis as a new strategy for GBM treatment. With its biocompatibility and photothermal conversion efficiency, graphdiyne (GDY) has become a high-profile nanomaterial. Here, the ferroptosis inducer FIN56 was employed to construct GDY-FIN56-RAP (GFR) polymer self-assembled nanoplatforms against GBM. GDY could effectively load FIN56 and FIN56 released from GFR in a pH-dependent manner. The GFR nanoplatforms possessed the advantages of penetrating the BBB and acidic environment-induced in situ FIN56 release. Moreover, GFR nanoplatforms induced GBM cell ferroptosis by inhibiting GPX4 expression, and 808 nm irradiation reinforced GFR-mediated ferroptosis by elevating the temperature and promoting FIN56 release from GFR. In addition, the GFR nanoplatforms were inclined to locate in tumor tissue, inhibit GBM growth, and prolong lifespan by inducing GPX4-mediated ferroptosis in an orthotopic xenograft mouse model of GBM; meanwhile, 808 nm irradiation further improved these GFR-mediated effects. Hence, GFR may be a potential nanomedicine for cancer therapy, and GFR combined with photothermal therapy may be a promising strategy against GBM.
More
Translated text
Key words
glioblastoma,photothermal-ferroptosis
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined