Homology-Directed-Repair-Based Genome Editing in HSPCs for the Treatment of Inborn Errors of Immunity and Blood Disorders.

Pharmaceutics(2023)

引用 2|浏览4
暂无评分
摘要
Genome engineering via targeted nucleases, specifically CRISPR-Cas9, has revolutionized the field of gene therapy research, providing a potential treatment for diseases of the blood and immune system. While numerous genome editing techniques have been used, CRISPR-Cas9 homology-directed repair (HDR)-mediated editing represents a promising method for the site-specific insertion of large transgenes for gene knock-in or gene correction. Alternative methods, such as lentiviral/gammaretroviral gene addition, gene knock-out via non-homologous end joining (NHEJ)-mediated editing, and base or prime editing, have shown great promise for clinical applications, yet all possess significant drawbacks when applied in the treatment of patients suffering from inborn errors of immunity or blood system disorders. This review aims to highlight the transformational benefits of HDR-mediated gene therapy and possible solutions for the existing problems holding the methodology back. Together, we aim to help bring HDR-based gene therapy in CD34 hematopoietic stem progenitor cells (HSPCs) from the lab bench to the bedside.
更多
查看译文
关键词
genome editing,hspcs,inborn errors,blood disorders,homology-directed-repair-based
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要