Comparing derivatization reagents for quantitative LC–MS/MS analysis of a variety of vitamin D metabolites

Anastasia Alexandridou,Pascal Schorr,Dietrich A. Volmer

Analytical and bioanalytical chemistry(2023)

引用 1|浏览3
暂无评分
摘要
The present study systematically compares the sensitivity and selectivity of the analysis of multiple vitamin D metabolites after chemical derivatization using different reagents for liquid chromatography-tandem mass spectrometry (LC–MS/MS). Generally, chemical derivatization is applied to vitamin D metabolites to increase the ionization efficiency, which is particularly important for very low abundant metabolites. Derivatization can also improve the selectivity of the LC separation. A wide variety of derivatization reagents has been reported in recent years, but information on their relative performance and applicability to different vitamin D metabolites is, unfortunately, not available in the literature. To fill this gap, we investigated vitamin D 3 , 3β-25-hydroxyvitamin D 3 (3β-25(OH)D 3 ), 3α-25-hydroxyvitamin D 3 (3α-25(OH)D 3 ), 1,25-dihydroxyvitamin D 3 (1,25(OH) 2 D 3 ), and 24,25-dihydroxyvitamin D 3 (24,25(OH) 2 D 3 ) and compared response factors and selectivity after derivatizing with several important reagents, including four dienophile reagents (4-phenyl-1,2,4-triazoline-3,5-dione (PTAD), 4-[2-(6,7-dimethoxy-4-methyl-3-oxo-3,4-dihydroquinoxalinyl)ethyl]-1,2,4-triazoline-3,5-dione (DMEQ-TAD), Amplifex, 2-nitrosopyridine (PyrNO)) as well as two reagents targeting hydroxyl groups: isonicotinoyl chloride (INC) and 2-fluoro-1-methylpyridinium-p-toluenesulfonate (FMP-TS). In addition, a combination of dienophiles and hydroxyl group reagents was examined. For LC separations, reversed-phase C-18 and mixed-mode pentafluorophenyl HPLC columns using different compositions of the mobile phase were compared. With respect to detection sensitivity, the optimum derivatization reagent for the profiling of multiple metabolites was Amplifex. Nevertheless, FMP-TS, INC, PTAD, or PTAD combined with an acetylation reaction showed very good performance for selected metabolites. These reagent combinations provided signal enhancements on the order of 3- to 295-fold depending on the compound. Chromatographic separation of the dihydroxylated vitamin D 3 species was readily achieved using any of the derivatization reactions, while for 25(OH)D 3 epimers, only PyrNO, FMP, INC, and PTAD combined with acetylation enabled complete separation. In conclusion, we believe this study can serve as a useful reference for vitamin D laboratories, to help analytical and clinical scientists decide which derivatization reagent to choose for their application.
更多
查看译文
关键词
Vitamin D3 metabolites,25-Hydroxyvitamin D3,LC–MS/MS,Electrospray,Chemical derivatization,Epimers
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要