Host genetic background is a barrier to broadly effective vaccine-mediated protection against tuberculosis.

The Journal of clinical investigation(2023)

引用 4|浏览21
暂无评分
摘要
Heterogeneity in human immune responses is difficult to model in standard laboratory mice. To understand how host variation affects BCG-induced immunity against Mycobacterium tuberculosis, we studied 24 unique Collaborative Cross (CC) mouse strains, which differ primarily in the genes and alleles they inherit from founder strains. The CC strains were vaccinated with or without BCG, and then challenged with aerosolized M. tuberculosis. As BCG protects only half of the CC strains tested, we conclude that host genetics has a major influence on BCG-induced immunity against M. tuberculosis infection, making it an important barrier to vaccine-mediated protection. Importantly, BCG efficacy is dissociable from inherent susceptibility to TB. T cell immunity was extensively characterized to identify components associated with protection that were stimulated by BCG and recalled after Mtb infection. Although considerable diversity is observed, BCG has little impact on the composition of T cells in the lung after infection. Instead, variability is largely shaped by host genetics. BCG-elicited protection against TB correlated with changes in immune function. Thus, CC mice can be used to define correlates of protection and to identify vaccine strategies that protect a larger fraction of genetically diverse individuals instead of optimizing protection for a single genotype. .
更多
查看译文
关键词
effective vaccine–mediated,genetic background
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要