Self-Propelled Janus Nanocatalytic Robots Guided by Magnetic Resonance Imaging for Enhanced Tumor Penetration and Therapy.

Journal of the American Chemical Society(2023)

引用 5|浏览25
暂无评分
摘要
Biomedical micro/nanorobots as active delivery systems with the features of self-propulsion and controllable navigation have made tremendous progress in disease therapy and diagnosis, detection, and biodetoxification. However, existing micro/nanorobots are still suffering from complex drug loading, physiological drug stability, and uncontrollable drug release. To solve these problems, micro/nanorobots and nanocatalytic medicine as two independent research fields were integrated in this study to achieve self-propulsion-induced deeper tumor penetration and catalytic reaction-initiated tumor therapy in vivo. We presented self-propelled Janus nanocatalytic robots (JNCRs) guided by magnetic resonance imaging (MRI) for in vivo enhanced tumor therapy. These JNCRs exhibited active movement in HO solution, and their migration in the tumor tissue could be tracked by non-invasive MRI in real time. Both increased temperature and reactive oxygen species production were induced by near-infrared light irradiation and iron-mediated Fenton reaction, showing great potential for tumor photothermal and chemodynamic therapy. In comparison with passive nanoparticles, these self-propelled JNCRs enabled deeper tumor penetration and enhanced tumor therapy after intratumoral injection. Importantly, these robots with biocompatible components and byproducts exhibited biosecurity in the mouse model. It is expected that our work could promote the combination of micro/nanorobots and nanocatalytic medicine, resulting in improved tumor therapy and potential clinical transformations.
更多
查看译文
关键词
janus nanocatalytic robots,enhanced tumor penetration,magnetic resonance imaging,magnetic resonance,self-propelled
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要