Fragmentation of Hydrophilic Guidewire Coatings During Neuroendovascular Therapy

Clinical neuroradiology(2023)

引用 0|浏览0
暂无评分
摘要
Purpose Cerebral polymer coating embolism from intravascular devices may cause serious complications after endovascular therapy (EVT) for neurovascular diseases. Although polymer fragments are often created during endovascular procedures, exact mechanisms of their formation, especially if of small size, are largely unknown. Methods In this study eight microguidewires (Asahi Chikai 200 cm (Asahi Intecc, Aichi, Japan), Asahi Chikai Black (Asahi Intecc), Fathom™ (Boston Scientific, Marlborough, MA, USA), Hybrid (Balt Extrusion, Montmorency, France), Radifocus® Guide Wire GT (Terumo, Leuven, Belgium), Synchro 2 ® (Stryker, Kalamazoo, MI, USA), Transend™ EX (Boston Scientific), and Traxcess™ (MicroVention®, Tustin, CA, USA)) frequently used during EVT were investigated ex vivo using their dedicated metal or plastic insertion tools to assess for coating delamination after backloading of the microguidewires. Results Backloading caused damage to the coating of all microguidewires especially when the main body of the guidewires was bent in front of the insertion tool. All studied microguidewires produced microscopic filamentous and/or band-like coating fragments. Few larger irregular fragments were observed, but also very small fragments measuring 1–3 µm in diameter were found. Spectroscopic measurements of polymer fragments and microguidewires identified various polymers. Conclusion Backloading of polymer-coated microguidewires during EVT should be minimized if possible. More stable hydrophilic coatings on microguidewires and less traumatic insertion tools are desirable.
更多
查看译文
关键词
Attenuated total reflection Fourier transform infrared spectroscopy,Microguidewire coating,Hydrophilic polymer,Cerebral polymer embolism,Polytetrafluoroethylene,Delamination
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要