Magnetic Resonance Imaging for Monitoring of Hepatic Disease Induced by Ebola Virus: a Nonhuman Primate Proof-of-Concept Study.

Microbiology spectrum(2023)

引用 0|浏览21
暂无评分
摘要
Severe liver impairment is a well-known hallmark of Ebola virus disease (EVD). However, the role of hepatic involvement in EVD progression is understudied. Medical imaging in established animal models of EVD (e.g., nonhuman primates [NHPs]) can be a strong complement to traditional assays to better investigate this pathophysiological process and noninvasively. In this proof-of-concept study, we used longitudinal multiparametric magnetic resonance imaging (MRI) to characterize liver morphology and function in nine rhesus monkeys after exposure to Ebola virus (EBOV). Starting 5 days postexposure, MRI assessments of liver appearance, morphology, and size were consistently compatible with the presence of hepatic edema, inflammation, and congestion, leading to significant hepatomegaly at necropsy. MRI performed after injection of a hepatobiliary contrast agent demonstrated decreased liver signal on the day of euthanasia, suggesting progressive hepatocellular dysfunction and hepatic secretory impairment associated with EBOV infection. Importantly, MRI-assessed deterioration of biliary function was acute and progressed faster than changes in serum bilirubin concentrations. These findings suggest that longitudinal quantitative imaging may be a useful addition to standard biological assays to gain additional knowledge about organ pathophysiology in animal models of EVD. Severe liver impairment is a well-known hallmark of Ebola virus disease (EVD), but the contribution of hepatic pathophysiology to EVD progression is not fully understood. Noninvasive medical imaging of liver structure and function in well-established animal models of disease may shed light on this important aspect of EVD. In this proof-of-concept study, we used longitudinal magnetic resonance imaging (MRI) to characterize liver abnormalities and dysfunction in rhesus monkeys exposed to Ebola virus. The results indicate that MRI may be used as a noninvasive readout of organ pathophysiology in EVD and may be used in future animal studies to further characterize organ-specific damage of this condition, in addition to standard biological assays.
更多
查看译文
关键词
MRI, animal models, Ebola virus, Ebola virus disease, filovirus, medical imaging, nonhuman primate, virus
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要