Sunlight Significantly Enhances Soil Denitrification via an Interfacial Biophotoelectrochemical Pathway.

Shaofu Huang, Keyan Chen,Xiangyu Chen,Hanpeng Liao, Raymond Jianxiong Zeng,Shungui Zhou,Man Chen

Environmental science & technology(2023)

引用 1|浏览7
暂无评分
摘要
Denitrification is an essential step of the nitrogen cycle in soil. However, although sunlight is an important environmental factor for soil, the investigation of the influence of sunlight on soil denitrification is limited to plant photosynthesis-mediated processes. Herein, a new pathway, denoted as a biophotoelectrochemical process, which is induced by the direct photoexcitation of soil, was found to greatly enhance soil denitrification. Using red soil as the research object, the soil with irradiation showed nitrate reduction that was 2.6-4.7 times faster than that without irradiation. The irradiation of soil accelerated the reduction of nitrite and enhanced the conversion of nitrous oxide to nitrogen, indicating that more electron sources were generated. This resulted from the photoinduced generation of ferrous substrates and photoelectrons. The contribution of irradiation to soil denitrification was almost half (45.4%), of which 30.9% was from photoinduced ferrous substrates and 14.5% was from photoelectrons. Moreover, a designed biophotoelectrochemical cell provided solid evidence for direct photoelectron transfer from soil photosensitive substrates to microorganisms. Irradiation promoted the enrichment of , which participates in iron oxidation and electroautotrophy. This finding reveals a role of sunlight in soil denitrification that has been thus seriously overlooked and provides solid evidence for the natural occurrence of photoelectrotrophic effects.
更多
查看译文
关键词
interfacial biophotoelectrochemical pathway,soil
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要