Two-Dimensional Siloxene Nanosheets: Impact of Morphology and Purity on Electrochemistry.

ACS applied materials & interfaces(2023)

引用 0|浏览10
暂无评分
摘要
Two-dimensional (2D) siloxene (SiOH) has shown promise as a negative electrode material for Li-ion batteries due to its high gravimetric capacity and superior mechanical properties under (de)lithiation compared to bulk Si. In this work, we prepare purified siloxene nanosheets through the removal of bulk Si contaminants, use ultrasonication to control the lateral size and thickness of the nanosheets, and probe the effects of the resulting morphology and purity on the electrochemistry. The thin siloxene nanosheets formed after 4 h of ultrasonication deliver an average capacity of 810 mA h/g under a 1000 mA/g rate over 200 cycles with a capacity retention of 76%. Interestingly, the purified siloxene shows lower initial capacity but superior capacity retention over extended cycling. The 2D morphology benefit is illustrated where the parent siloxene nanosheet morphology and structure were largely maintained based on optoelectrochemistry, in situ Raman, ex situ scanning electron microscopy, and ex situ transmission electron microscopy. Furthermore, the purified siloxene-based electrode free from crystalline Si impurity experiences the least expansion upon (de)lithiation as visualized by cross-section electron microscopy of samples recovered post-cycling.
更多
查看译文
关键词
electrochemistry,two-dimensional
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要