Restoring calcium homeostasis in Purkinje cells arrests neurodegeneration and neuroinflammation in the ARSACS mouse model.

JCI insight(2023)

Cited 0|Views8
No score
Abstract
Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay (ARSACS) is caused by mutations in SACS gene encoding sacsin, a huge protein highly expressed in cerebellar Purkinje cells (PCs). ARSACS patients, as well as mouse models, display early degeneration of PCs, but the underlying mechanisms remain unexplored, with no available treatments.In this work, we demonstrated aberrant calcium (Ca2+) homeostasis and its impact on PC degeneration in ARSACS. Mechanistically, we found pathological elevation in Ca2+-evoked responses in Sacs-/- PCs, as the result of defective mitochondria and ER trafficking to distal dendrites and strong downregulation of key Ca2+ buffer-proteins. Alteration of cytoskeletal linkers, that we identified as specific sacsin interactors, likely account for faulty organellar trafficking in Sacs-/- cerebellum.Based on this pathogenetic cascade, we treated Sacs-/- mice with Ceftriaxone, a repurposed drug which exerts neuroprotection by limiting neuronal glutamatergic stimulation, and thus Ca2+ fluxes into PCs. Ceftriaxone treatment significantly improved motor performances of Sacs-/- mice, at both pre- and post-symptomatic stages. We correlated this effect to restored Ca2+ homeostasis, which arrests PC degeneration and attenuates secondary neuroinflammation. These findings disclose new key steps in ARSACS pathogenesis and support further optimization of Ceftriaxone in pre-clinical and clinical settings for the treatment of ARSACSpatients.
More
Translated text
Key words
Cell biology,Neuroscience
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined