Utilising natural diversity of kinases to rationally engineer interactions with the angiosperm immune receptor ZAR1.

Plant, cell & environment(2023)

引用 0|浏览5
暂无评分
摘要
The highly conserved angiosperm immune receptor HOPZ-ACTIVATED RESISTANCE1 (ZAR1) recognises the activity of diverse pathogen effector proteins by monitoring the ZED1-related kinase (ZRK) family. Understanding how ZAR1 achieves interaction specificity for ZRKs may allow for the expansion of the ZAR1-kinase recognition repertoire to achieve novel pathogen recognition outside of model species. We took advantage of the natural diversity of Arabidopsis thaliana kinases to probe the ZAR1-kinase interaction interface and found that A. thaliana ZAR1 (AtZAR1) can interact with most ZRKs, except ZRK7. We found evidence of alternative splicing of ZRK7, resulting in a protein that can interact with AtZAR1. Despite high sequence conservation of ZAR1, interspecific ZAR1-ZRK pairings resulted in the autoactivation of cell death. We showed that ZAR1 interacts with a greater diversity of kinases than previously thought, while still possessing the capacity for specificity in kinase interactions. Finally, using AtZAR1-ZRK interaction data, we rationally increased ZRK10 interaction strength with AtZAR1, demonstrating the feasibility of the rational design of a ZAR1-interacting kinase. Overall, our findings advance our understanding of the rules governing ZAR1 interaction specificity, with promising future directions for expanding ZAR1 immunodiversity.
更多
查看译文
关键词
Arabidopsis thaliana, cell death, disease resistance, hypersensitive response, kinase, Nicotiana benthamiana, NLR, plant immunity, protein-protein interactions, Pseudomonas syringae
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要