Biobased epoxidized natural rubber/sodium carboxymethyl cellulose composites with enhanced strength and healing ability.

International journal of biological macromolecules(2023)

引用 3|浏览19
暂无评分
摘要
Conventional vulcanized rubbers cause a non-negligible waste of resources due to the formation of 3D irreversible covalently cross-linked networks. The introduction of reversible covalent bonds, such as reversible disulfide bonds, into the rubber network, is an available solution to the above problem. However, the mechanical properties of rubber with only reversible disulfide bonds cannot meet most practical applications. In this paper, a strengthened bio-based epoxidized natural rubber (ENR) composite reinforced by sodium carboxymethyl cellulose (SCMC) was prepared. SCMC forms a mass of hydrogen bonds between its hydroxyl groups and the hydrophilic groups of ENR chain, which gives the ENR/2,2'-Dithiodibenzoic acid (DTSA)/SCMC composites an enhanced mechanical performance. With 20 phr SCMC, the tensile strength of the composite increases from 3.0 to 10.4 MPa, which is almost 3.5 times that of the ENR/DTSA composite without SCMC. Simultaneously, DTSA covalently cross-linked ENR with the introduction of reversible disulfide bonds, which enables the cross-linked network to rearrange its topology at low temperatures and thus endows the ENR/DTSA/SCMC composites with healing properties. The ENR/DTSA/SCMC-10 composite has a considerable healing efficiency of about 96 % after healing at 80 °C for 12 h.
更多
查看译文
关键词
Epoxidized natural rubber,Sodium carboxymethyl cellulose,Mechanical reinforcement,Healing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要