Stepwise activation of p63 and the MEK/ERK pathway induces the expression of ARL4C to promote oral squamous cell carcinoma cell proliferation.

Pathology, research and practice(2023)

引用 2|浏览1
暂无评分
摘要
Carcinogenesis is a multistep process wherein cells accumulate multiple genetic alterations and progress to a more malignant phenotype. It has been proposed that sequential accumulation of gene abnormalities in specific genes drives the transition from non-tumorous epithelia through a preneoplastic lesion/benign tumor to cancer. Histologically, oral squamous cell carcinoma (OSCC) progresses in multiple ordered steps that begin with mucosal epithelial cell hyperplasia, which is followed by dysplasia, carcinoma in situ and invasive carcinoma. It is therefore hypothesized that genetic alteration-mediated multistep carcinogenesis would be involved in the development of OSCC; however, the detailed molecular mechanisms are unknown. We clarified the comprehensive gene expression patterns and carried out an enrichment analysis using DNA microarray data from a pathological specimen of OSCC (including a non-tumor region, carcinoma in situ lesion and invasive carcinoma lesion). The expression of numerous genes and signal activation were altered in the development of OSCC. Among these, the p63 expression was increased and the MEK/ERK-MAPK pathway was activated in carcinoma in situ lesion and in invasive carcinoma lesion. Immunohistochemical analyses revealed that p63 was initially upregulated in carcinoma in situ and ERK was sequentially activated in invasive carcinoma lesions in OSCC specimens. ADP-ribosylation factor (ARF)-like 4c (ARL4C), the expression of which is reportedly induced by p63 and/or the MEK/ERK-MAPK pathway in OSCC cells, has been shown to promote tumorigenesis. Immunohistochemically, in OSCC specimens, ARL4C was more frequently detected in tumor lesions, especially in invasive carcinoma lesions, than in carcinoma in situ lesions. Additionally, ARL4C and phosphorylated ERK were frequently merged in invasive carcinoma lesions. Loss-of-function experiments using inhibitors and siRNAs revealed that p63 and MEK/ERK-MAPK cooperatively induce the expression of ARL4C and cell growth in OSCC cells. These results suggest that the stepwise activation of p63 and MEK/ERK-MAPK contributes to OSCC tumor cell growth through regulation of ARL4C expression.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要