Weakly-Supervised Contrastive Learning for Unsupervised Object Discovery

IEEE TRANSACTIONS ON IMAGE PROCESSING(2024)

引用 0|浏览15
暂无评分
摘要
Unsupervised object discovery (UOD) refers to the task of discriminating the whole region of objects from the background within a scene without relying on labeled datasets, which benefits the task of bounding-box-level localization and pixel-level segmentation. This task is promising due to its ability to discover objects in a generic manner. We roughly categorize existing techniques into two main directions, namely the generative solutions based on image resynthesis, and the clustering methods based on self-supervised models. We have observed that the former heavily relies on the quality of image reconstruction, while the latter shows limitations in effectively modeling semantic correlations. To directly target at object discovery, we focus on the latter approach and propose a novel solution by incorporating weakly-supervised contrastive learning (WCL) to enhance semantic information exploration. We design a semantic-guided self-supervised learning model to extract high-level semantic features from images, which is achieved by fine-tuning the feature encoder of a self-supervised model, namely DINO, via WCL. Subsequently, we introduce Principal Component Analysis (PCA) to localize object regions. The principal projection direction, corresponding to the maximal eigenvalue, serves as an indicator of the object region(s). Extensive experiments on benchmark unsupervised object discovery datasets demonstrate the effectiveness of our proposed solution. The source code and experimental results are publicly available via our project page at https://github.com/npucvr/WSCUOD.git.
更多
查看译文
关键词
Self-supervised learning,Semantics,Task analysis,Representation learning,Principal component analysis,Feature extraction,Image segmentation,Unsupervised object discovery,weakly-supervised contrastive learning,principal component analysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要