Multifunctional wood-based hydrogels for wastewater treatment and interfacial solar steam generation

Chemical Engineering Journal(2023)

Cited 3|Views5
No score
Abstract
Elaborately designing multifunctional energy conversion materials is vital to promoting renewable energy conversion. Herein, we report a novel approach in which photocatalytic materials and photothermal components are embedded simultaneously into porous delignified wood to construct wood-based hybrid hydrogels for water decontamination, hydrogen generation and freshwater production. Well-designed all-in-one system elaborately interfaces hydrogen-evolving semiconductor CdS with MoSe2 that functions as co-catalyst and also possesses photothermal effect to simultaneously drive the removal of pollutants, hydrogen production and solar steam generation with high efficiency. The multifunctional system demonstrates a hydrogen evolution rate of 9.7 mmol g-1 h-1 and a high solar evaporation rate of 1.92 kg m- 2 h-1 with an energy conversion efficiency up to 90.7% under one sun illumination. The encapsulation of photothermal-assisted photocatalytic systems with hydrogels effectively prevents toxic volatile organic compounds (VOCs) from being evaporated without deteriorating the solar steam generation performance. This study provides new insights into the rational design of novel multi-functional materials for environmental remediation and energy sustainability.
More
Translated text
Key words
Photocatalysis, VOCs, Hydrogen generation, Solar evaporation, Wood
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined