Visualization of axonal protein allocation inDrosophilawith whole-brain localization microscopy

crossref(2018)

Cited 0|Views1
No score
Abstract
AbstractLong-term memory (LTM) formation requires learning-induced protein synthesis in specific neurons and synapses within a neural circuit. Precisely how neural activity allocates new proteins to specific synaptic ensembles, however, remains unknown. We developed a deep-tissue super-resolution imaging tool suitable for single-molecule localization in intact adultDrosophilabrain, and focused on the axonal protein allocation in mushroom body (MB), a central neuronal structure involved in olfactory memory formation. We found that insufficient training suppresses LTM formation by inducing the synthesis of vesicular monoamine transporter (VMAT) proteins within a dorsal paired medial (DPM) neuron, which innervates all axonal lobes of the MB. Surprisingly, using our localization microscopy, we found that these learning-induced proteins are distributed only in a subset of DPM axons in specific sectors along the MB lobes. This neural architecture suggests that sector-specific modulation of neural activity from MB neurons gates consolidation of early transient memory into LTM.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined