Pathogen sensing device based on 2D MoS2/graphene heterostructure.

Sensors and Actuators B: Chemical(2023)

引用 0|浏览14
暂无评分
摘要
In this work we propose a new methodology for selective and sensitive pathogen detection based on a 2D layered heterostructured biosensing platform. As a proof of concept, we have chosen SARS-CoV-2 virus because the availability of new methods to detect this virus is still a great deal of interest. The prepared platform is based on the covalent immobilization of molybdenum disulphide functionalized with a diazonium salt (f-MoS2) onto graphene screen-printed electrodes (GPH SPE) by electrografting of the diazonium salt. This chemistry-based method generates an improved heterostructured biosensing platform for aptamer immobilization and aptasensor development. Electrochemical impedance spectroscopy (EIS) is used to obtain the signal response of the device, proving the ability of the sensor platform to detect the virus. SARS-CoV-2 spike RBD recombinant protein (SARS-CoV-2 S1 protein) has been detected and quantified with a low detection limit of 2.10 fg/mL. The selectivity of the developed biosensor has been confirmed after detecting the S1 protein even in presence of other interfering proteins. Moreover, the ability of the device to detect SARS-CoV-2 S1 protein has been also tested in nasopharyngeal swab samples.
更多
查看译文
关键词
mos2/graphene heterostructure,pathogen
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要