Investigation of resistance mechanisms to fomesafen in Ipomoea nil from China

Shihan Cao, Yize Zou, Shuai Zhang, Hongtao Zhang, Yidi Guan, Liru Liu, Mingshan Ji

PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY(2023)

Cited 0|Views6
No score
Abstract
Recently, the herbicide fomesafen has frequently failed to control the troublesome weed Ipomoea nil in soybean fields in Liaoning Province, China. Hence, we collected 10 suspected resistant populations and evaluated their sensitivity to fomesafen. The results revealed various degrees of Ipomoea nil resistance to fomesafen, with a resistance index of 2.88 to 22.43; the highest value occurred in the LN3 population. Therefore, the mechanisms of the resistance in LN3 to fomesafen were explored. After fomesafen treatment, the expression levels of InPPX1 and InPPX2 genes were 4.19- and 9.29-fold higher, respectively, in LN3 than those in the susceptible (LN1) population. However, mutations and copy number variations were not detected between the two populations. Additionally, malathion pretreatment reduced the dose necessary to halve the growth rate of LN3 by 58%. Liquid chromatography with tandem mass spectrometry demonstrated that metabolism of fomesafen was significantly suppressed by malathion. Moreover, LN3 displayed increased reactive oxygen species scavenging capacity, which was represented by higher superoxide dismutase and peroxidase activities after fomesafen application than those in LN1. An orthogonal partial least squares-discriminant analysis revealed that the high resistance in LN3 could be attributed mainly to enhanced metabolism. Fortunately, the fomesafen-resistant I. nil remained sensitive to 2,4-D-ethylhexylester and bentazon, providing methods for its control.
More
Translated text
Key words
Ipomoea nil,Fomesafen,Metabolic resistance,Overexpression,Reactive oxygen species scavenging
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined