Brain-derived estrogen: a critical player in maintaining cognitive health of aged female rats, possibly involving GPR30

Neurobiology of Aging(2023)

引用 1|浏览6
暂无评分
摘要
Brain-derived estrogen is an endogenous neuroprotective agent, whether and how might this protective function with aging, especially postmenopausal drops in circulating estrogen, remain unclear. We herein subjected 6, 14, and 18 Mon female rats to mimic natural aging, and found that estrogen synthesis is more active in the healthy aged brain, as evidenced by the highest levels of mRNA and protein expression of aromatase, the key enzyme of E2 biosynthesis, among the three groups. Aromatase knockout in forebrain neurons (FBN-Aro-/-) impaired hippocampal and cortical neurons, and cognitive function in 18 Mon rats, compared to wild-type controls. Furthermore, estrogen nuclear receptors (ERα/β) displayed opposite changes, with a significant ERα decrease and ERβ increase, while membrane receptor GPR30 expressed stably in hippocampus during aging. Intriguingly, GPR30, but not ERα and ERβ, was decreased by FBN-Aro-/-. The results indicate that GPR30 is more sensitive to brain local E2 synthesis. Our findings provide evidence of a critical role for brain-derived estrogen in maintaining healthy brain function in older individuals, possibly involving GPR30.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要