Chrome Extension
WeChat Mini Program
Use on ChatGLM

High Rate, High Temperature, Dendrite Free Plating/stripping of Li in 3-Dimensional Honeycomb Boron Carbon Nitride to Realize an Ultrastable Lithium Metal Anode

Journal of energy storage(2023)

Cited 0|Views2
No score
Abstract
Lithium (Li) metal could be the anode of choice for energy dense Li-batteries owing to its high theoretical specific capacity. However, low coulombic efficiency and poor safety on account of the occurrence of the Li-dendrites during charging-discharging pose a bottleneck for practical applications. In this work, we report a high-rate plating and stripping of Li through host engineering to realize ultrastable Li metal anode (LMA). Benchmark plating/stripping efficiency could be achieved via uniquely structured, highly ordered honeycomb boron carbon nitride (HBCN) as a functional scaffold. Boron and nitrogen doping, large surface area and ordered mesoporous structure induce homogeneous solid electrolyte interface (SEI) layer formation and provide numerous nucleation sites with subsequent dendrite-free growth with 99.98 % coulombic efficiency at 8 mA cm(-2) high current and 10 mAh cm(-2) capacity over 3000 cycles. Via post-cycling advanced characterizations techniques of Ex-situ XPS, 3D X-ray micro-tomography analyses and FESEM, we demonstrate the formation of a stable SEI layer and morphological changes that occurred during Li plating cycles in the HBCN structure. Computational studies validate the high lithium plating-stripping efficacy of HBCN to its highly ordered porous nature, exothermic Li-binding and upshift in the Fermi levels. When tested at elevated temperature (50 degrees C), a stable Li plating-stripping in HBCN is realised at 4 mA cm(-2) current and 10 mAh cm(-2) capacity values with similar to 100 % C.E. Furthermore, we report the results of testing a Li metal cell comprised of Li deposited HBCN anode and LiFePO4 (LFP) cathode.
More
Translated text
Key words
Dendrite-free Li metal anode,Boron carbon nitride,Functional scaffold,High temperature plating/stripping of Li,X-ray micro-tomography,Molecular planarity parameter
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined