Enabling hydrate-based methane storage under mild operating conditions by periodic mesoporous organosilica nanotubes

Heliyon(2023)

引用 3|浏览7
暂无评分
摘要
Biomethane is a renewable natural gas substitute produced from biogas. Storage of this sustainable energy vector in confined clathrate hydrates, encapsulated in the pores of a host material, is a highly promising avenue to improve storage capacity and energy efficiency. Herein, a new type of periodic mesoporous organosilica (PMO) nanotubes, referred to as hollow ring PMO (HR-PMO), capable of promoting methane clathrate hydrate formation under mild working conditions (273 K, 3.5 MPa) and at high water loading (5.1 g water/g HR-PMO) is reported. Gravimetric uptake measurements reveal a steep single-stepped isotherm and a noticeably high methane storage capacity (0.55 g methane/g HR-PMO; 0.11 g methane/g water at 3.5 MPa). The large working capacity throughout consecutive pressure-induced clathrate hydrate formation-dissociation cycles demonstrates the material’s excellent recyclability (97% preservation of capacity). Supported by ex situ cryo-electron tomography and x-ray diffraction, HR-PMO nanotubes are hypothesized to promote clathrate hydrate nucleation and growth by distribution and confinement of water in the mesopores of their outer wall, along the central channels of the nanotubes and on the external nanotube surface. These findings showcase the potential for application of organosilica materials with hierarchical and interconnected pore systems for pressure-based storage of biomethane in confined clathrate hydrates.
更多
查看译文
关键词
Biomethane,Clathrate hydrate,Methane hydrate,Periodic mesoporous organosilica,Pressure-swing (un)loading
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要