Sulfur vacancy rich MoS2/FeMoO4 composites derived from MIL-53(Fe) as PMS activator for efficient elimination of dye: Nonradical 1O2 dominated mechanism

Environmental Pollution(2023)

引用 2|浏览1
暂无评分
摘要
A novel MoS2/FeMoO4 composite was synthesized for the first time by introducing an inorganic promoter MoS2 into the MIL-53(Fe)-derived PMS-activator. The prepared MoS2/FeMoO4 could effectively activate peroxymonosulfate (PMS) toward 99.7% of rhodamine B (RhB) degradation in 20 min, and achieve a kinetic constant of 0.172 min−1, which is 10.8, 43.0 and 3.9 folds higher than MIL-53, MoS2 and FeMoO4 components, respectively. Both Fe(II) and sulfur vacancies are identified as the main active sites on catalyst surface, where sulfur vacancies can promote adsorption and electron migration between peroxymonosulfate and MoS2/FeMoO4 to accelerate peroxide bond activation. Besides, the Fe(III)/Fe(II) redox cycle was improved by reductive Fe0, S2− and Mo(IV) species to further boost PMS activation and RhB degradation. Comparative quenching experiment and in-situ electron paramagnetic resonance (EPR) spectra verified that SO4•−, •OH, 1O2 and O2•− were produced in the MoS2/FeMoO4/PMS system, while 1O2 dominates RhB elimination. In addition, the influences of various reaction parameters on RhB removal were examined and the MoS2/FeMoO4/PMS system exhibits good performance over a wide pH and temperature range, as well as coexistence with common inorganic ions and humic acid (HA). This study provides a new strategy for preparing MOF-derived composite with simultaneous introduction of MoS2 promotor and rich sulfur vacancies, and enables new insight into radical/nonradical pathway in PMS activation process.
更多
查看译文
关键词
mos2/femoo4 composites,dye,pms activator
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要