谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Strategies of stable thermal output and humidity dual control for a packed-bed adsorption thermal battery

Energy(2023)

引用 0|浏览5
暂无评分
摘要
Water-based adsorption thermal battery (ATB) could provide huge possibility in widespread applications; especially for space heating, leading to appreciable energy saving and low-grade heat energy utilization. A proof-of-concept prototype based on composite adsorbents has been constructed to investigate the thermal performances of a packed-bed ATB. A possible strategy of tunning airflow rate for performance regulation is proposed and studied to realize stable thermal output. Additional experimental results indicated that the output temperature and heating power can be synchronously stabilized through progressive tunability of loop airflow rate in the loop-cycle ATB system. The output RH spans 40–60% along the effective discharging process, enabling a controllable humidity management in the application of direct space heating considering human thermal comfort. A three-dimensional computational model for predicting the overall thermal output performances of a packed-bed adsorption thermal battery is further developed and established. The simulation results reveal that an effective heating time of 8.6 h with a discharging threshold temperature of 24 °C, and an average power density of 19.3 kW m−3 can be achieved with a maximum heat discharging efficiency of 63.4%. It is, therefore, apparent that the ATB is capable of achieving stable thermal outputs for space heating applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要