Feasibility study of thermo-compensated resistance brazing welding of C/C composites and T2 copper with AgCuTi filler metal

Chinese Journal of Aeronautics(2023)

Cited 0|Views4
No score
Abstract
The dissimilar materials joining of C/C composites to T2 copper were performed successfully by thermo-compensated Resistance Brazing Welding (RBW) with AgCuTi filler powder. The interfacial microstructure, phase composition, and shear strength of the resistance brazed joints were investigated by the relevant analysis method. Experiment results indicated that the order affecting the shear strength of the C/C-Cu joint was welding current, welding pressure, and welding time in turn. The shear strength of backward thermo-compensated RBW was higher than that of forward thermo-compensated RBW due to the Peltier effect. The maximum shear strength of the C/C-Cu joint was 11.56 MPa in the optimized welding parameter with welding current of 8.0 kA, welding time of 60 ms, and welding pressure of 0.10 MPa by backward thermo-compensated RBW. The interface structure at the resistance brazed joint with this welding parameter was C/C composites/TiC/Cu (s.s)/T2 copper. The TiC phase was verified at the interface of the brazed joint by Scanning Electron Microscope (SEM), Energy-Dispersive X-ray Spectrometer (EDS), and X-ray Diffraction (XRD). Considerable fractures occurred in the C/C composites and partial fracture occurred at the interfacial reaction layer.
More
Translated text
Key words
welding,t2 copper,filler metal,thermo-compensated
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined